Generalized Jacobian rings for open complete intersections

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Jacobian Rings for Open Complete Intersections

In this paper, we develop the theory of Jacobian rings of open complete intersections, which mean a pair (X,Z) where X is a smooth complete intersection in the projective space and and Z is a simple normal crossing divisor in X whose irreducible components are smooth hypersurface sections on X . Our Jacobian rings give an algebraic description of the cohomology of the open complement X − Z and ...

متن کامل

Generalized Complete Intersections with Linear Resolutions

We determine the simplicial complexes ∆ whose Stanley-Reisner ideals I∆ have the following property: for all n ≥ 1 the powers In ∆ have linear resolutions and finite length local cohomologies.

متن کامل

On Beilinson’s Hodge and Tate Conjectures for Open Complete Intersections

In his lectures in [G1], M. Green gives a lucid explanation how fruitful the infinitesimal method in Hodge theory is in various aspects of algebraic geometry. A significant idea is to use Koszul cohomology for Hodge-theoretic computations. The idea originates from Griffiths work [Gri] where the Poincaré residue representation of the cohomology of a hypersurface played a crucial role in proving ...

متن کامل

Criteria for complete intersections

We establish two criteria for certain local algebras to be complete intersections. These criteria play an important role in A. Wiles’s proof that all semi-stable elliptic curves over Q are modular. Introduction In this paper we discuss two results in commutative algebra that are used in A. Wiles’s proof that all semi-stable elliptic curves over Q are modular [11]. We first fix some notation tha...

متن کامل

Gale Duality for Complete Intersections

We show that every complete intersection defined by Laurent polynomials in an algebraic torus is isomorphic to a complete intersection defined by master functions in the complement of a hyperplane arrangement, and vice versa. We call systems defining such isomorphic schemes Gale dual systems because the exponents of the monomials in the polynomials annihilate the weights of the master functions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Nachrichten

سال: 2006

ISSN: 0025-584X,1522-2616

DOI: 10.1002/mana.200310343